人工智能发展史及算法介绍,一文读懂什么是机

作者: 基金股票  发布:2019-09-30

本文作为人工智能系列报告的第一篇,围绕人工智能的发展历史,人工智能主要算法以及人工智能在金融领域的应用展开综合论述,力求先为投资者勾勒出一幅人工智能全景图,后续我们将推出人工智能系列实战篇,结合多种机器学习算法,构造量化选股框架,为广大投资者提供成熟有效的策略。

图片 1

    人工智能发展历史波折起伏:人工智能自1956年正式确立以来,一直曲折发展,从产生到成为研究热点一直饱受质疑,期间经历两次发展低谷,而学科自身所迸发的生命力不断推动其走出低谷,成为引领技术革命的热点。从诞生伊始,人工智能就有理性学派和感性学派之争理性学派从符号计算出发,将人脑看成信息处理器,认为任何能够以一定的逻辑规则描述的问题都可以通过人工智能程序来计算解决。感性学派简单说就是通过对脑神经的模拟来获得人工智能,随着深度学习等技术的成功,人工智能的研究热点越来越集中到感性学派。

一文读懂什么是机器学习--1. 机器学习是什么?

    人工智能算法发展方向不断变化:学术界早期研究重点集中在符号计算,神经网络在人工智能发展早期被完全否定,而后逐渐被认可,再成为今天引领人工智能发展潮流的一大类算法,持续显现出生命活力本文着重介绍人工智能领域比较著名的4个算法,他们分别是感知器决策树,支持向量机和卷积神经网络。通过这4个具有代表性的算法理清机器学习的基本思想。

一文读懂什么是机器学习--2. 机器学习的范围?

    人工智能在金融领域应用:7月20日国务院正式印发了《新一代人工智能发展规划》,明确指出到2030年之前我国AI核心产业规模或超1万亿元。这是人工智能首次上升到国家战略高度,我们认为国内人工智能在金融里的应用还处于探索阶段,未来具有很大的发展潜力。目前人工智能应用场景还是集中在和大数据分析、与互联网连接紧密的领域,本文列举大数据基金、人工智能预测和智能投顾等例子来进行阐述。

一文读懂什么是机器学习--3. 机器学习的方法?

一文读懂什么是机器学习--4. 机器学习的应用及其子类?


本系列转自微信公众账号机器学习算法与Python学习


机器学习的应用及其子类

(1) 机器学习的应用——大数据大数据

说完机器学习的方法,下面要谈一谈机器学习的应用了。无疑,在2010年以前,机器学习的应用在某些特定领域发挥了巨大的作用,如车牌识别,网络攻击防范,手写字符识别等等。但是,从2010年以后,随着大数据概念的兴起,机器学习大量的应用都与大数据高度耦合,几乎可以认为大数据是机器学习应用的最佳场景。

譬如,但凡你能找到的介绍大数据魔力的文章,都会说大数据如何准确准确预测到了某些事。例如经典的Google利用大数据预测了H1N1在美国某小镇的爆发。

图片 2

图11 Google成功预测H1N1

百度预测2014年世界杯,从淘汰赛到决赛全部预测正确。

图片 3

图12 百度世界杯成功预测了所有比赛结果

这些实在太神奇了,那么究竟是什么原因导致大数据具有这些魔力的呢?简单来说,就是机器学习技术。正是基于机器学习技术的应用,数据才能发挥其魔力。

机器学习与大数据紧密联系。但是,必须清醒的认识到,大数据并不等同于机器学习,同理,机器学习也不等同于大数据。大数据中包含有分布式计算,内存数据库,多维分析等等多种技术。单从分析方法来看,大数据也包含以下四种分析方法:

1.大数据,小分析:即数据仓库领域的OLAP分析思路,也就是多维分析思想。

2.大数据,大分析:这个代表的就是数据挖掘与机器学习分析法。

3.流式分析:这个主要指的是事件驱动架构。

4.查询分析:经典代表是NoSQL数据库。

也就是说,机器学习仅仅是大数据分析中的一种而已。尽管机器学习的一些结果具有很大的魔力,在某种场合下是大数据价值最好的说明。但这并不代表机器学习是大数据下的唯一的分析方法。

在大数据的时代,有好多优势促使机器学习能够应用更广泛。例如随着物联网和移动设备的发展,我们拥有的数据越来越多,种类也包括图片、文本、视频等非结构化数据,这使得机器学习模型可以获得越来越多的数据。同时大数据技术中的分布式计算Map-Reduce使得机器学习的速度越来越快,可以更方便的使用。种种优势使得在大数据时代,机器学习的优势可以得到最佳的发挥。

(2) 机器学习的子类——深度学习

近来,机器学习的发展产生了一个新的方向,即“深度学习”。

虽然深度学习这四字听起来颇为高大上,但其理念却非常简单,就是传统的神经网络发展到了多隐藏层的情况。

在上文介绍过,自从90年代以后,神经网络已经消寂了一段时间。但是BP算法的发明人Geoffrey Hinton一直没有放弃对神经网络的研究。由于神经网络在隐藏层扩大到两个以上,其训练速度就会非常慢,因此实用性一直低于支持向量机。2006年,Geoffrey Hinton在科学杂志《Science》上发表了一篇文章,论证了两个观点:

1.多隐层的神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;

2.深度神经网络在训练上的难度,可以通过“逐层初始化” 来有效克服。

图片 4

图13 Geoffrey Hinton与他的学生在Science上发表文章

通过这样的发现,不仅解决了神经网络在计算上的难度,同时也说明了深层神经网络在学习上的优异性。从此,神经网络重新成为了机器学习界中的主流强大学习技术。同时,具有多个隐藏层的神经网络被称为深度神经网络,基于深度神经网络的学习研究称之为深度学习。

文章开头所列的三位机器学习的大牛,不仅都是机器学习界的专家,更是深度学习研究领域的先驱。因此,使他们担任各个大型互联网公司技术掌舵者的原因不仅在于他们的技术实力,更在于他们研究的领域是前景无限的深度学习技术。

目前业界许多的图像识别技术与语音识别技术的进步都源于深度学习的发展,除了本文开头所提的Cortana等语音助手,还包括一些图像识别应用,其中典型的代表就是下图的百度识图功能。

图片 5

图14 百度识图

深度学习属于机器学习的子类。基于深度学习的发展极大的促进了机器学习的地位提高,更进一步地,推动了业界对机器学习父类人工智能梦想的再次重视。

**(3) 机器学习的父类——人工智能**

人工智能是机器学习的父类。深度学习则是机器学习的子类。如果把三者的关系用图来表明的话,则是下图:

图片 6

图15 深度学习、机器学习、人工智能三者关系

总结起来,人工智能的发展经历了如下若干阶段,从早期的逻辑推理,到中期的专家系统,这些科研进步确实使我们离机器的智能有点接近了,但还有一大段距离。直到机器学习诞生以后,人工智能界感觉终于找对了方向。基于机器学习的图像识别和语音识别在某些垂直领域达到了跟人相媲美的程度。

人工智能的发展可能不仅取决于机器学习,更取决于前面所介绍的深度学习,深度学习技术由于深度模拟了人类大脑的构成,在视觉识别与语音识别上显著性的突破了原有机器学习技术的界限,因此极有可能是真正实现人工智能梦想的关键技术。无论是谷歌大脑还是百度大脑,都是通过海量层次的深度学习网络所构成的。也许借助于深度学习技术,在不远的将来,一个具有人类智能的计算机真的有可能实现。

本文由金沙城中心发布于基金股票,转载请注明出处:人工智能发展史及算法介绍,一文读懂什么是机

关键词: